\(\int (a+b \cos (c+d x))^{5/2} \sec ^3(c+d x) \, dx\) [506]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 270 \[ \int (a+b \cos (c+d x))^{5/2} \sec ^3(c+d x) \, dx=-\frac {9 a b \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{4 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {b \left (11 a^2+8 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{4 d \sqrt {a+b \cos (c+d x)}}+\frac {a \left (4 a^2+15 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{4 d \sqrt {a+b \cos (c+d x)}}+\frac {9 a b \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{4 d}+\frac {a^2 \sqrt {a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d} \]

[Out]

-9/4*a*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))
*(a+b*cos(d*x+c))^(1/2)/d/((a+b*cos(d*x+c))/(a+b))^(1/2)+1/4*b*(11*a^2+8*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos
(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*((a+b*cos(d*x+c))/(a+b))^(1/2)/d/(a+b*co
s(d*x+c))^(1/2)+1/4*a*(4*a^2+15*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/
2*c),2,2^(1/2)*(b/(a+b))^(1/2))*((a+b*cos(d*x+c))/(a+b))^(1/2)/d/(a+b*cos(d*x+c))^(1/2)+9/4*a*b*(a+b*cos(d*x+c
))^(1/2)*tan(d*x+c)/d+1/2*a^2*sec(d*x+c)*(a+b*cos(d*x+c))^(1/2)*tan(d*x+c)/d

Rubi [A] (verified)

Time = 1.03 (sec) , antiderivative size = 270, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.435, Rules used = {2871, 3134, 3138, 2734, 2732, 3081, 2742, 2740, 2886, 2884} \[ \int (a+b \cos (c+d x))^{5/2} \sec ^3(c+d x) \, dx=\frac {b \left (11 a^2+8 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{4 d \sqrt {a+b \cos (c+d x)}}+\frac {a \left (4 a^2+15 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{4 d \sqrt {a+b \cos (c+d x)}}+\frac {a^2 \tan (c+d x) \sec (c+d x) \sqrt {a+b \cos (c+d x)}}{2 d}+\frac {9 a b \tan (c+d x) \sqrt {a+b \cos (c+d x)}}{4 d}-\frac {9 a b \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{4 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}} \]

[In]

Int[(a + b*Cos[c + d*x])^(5/2)*Sec[c + d*x]^3,x]

[Out]

(-9*a*b*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(4*d*Sqrt[(a + b*Cos[c + d*x])/(a + b)
]) + (b*(11*a^2 + 8*b^2)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(4*d*Sqrt[a
 + b*Cos[c + d*x]]) + (a*(4*a^2 + 15*b^2)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/
(a + b)])/(4*d*Sqrt[a + b*Cos[c + d*x]]) + (9*a*b*Sqrt[a + b*Cos[c + d*x]]*Tan[c + d*x])/(4*d) + (a^2*Sqrt[a +
 b*Cos[c + d*x]]*Sec[c + d*x]*Tan[c + d*x])/(2*d)

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2871

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(-(b^2*c^2 - 2*a*b*c*d + a^2*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/
(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^(m - 3)*(c + d*Sin[e
 + f*x])^(n + 1)*Simp[b*(m - 2)*(b*c - a*d)^2 + a*d*(n + 1)*(c*(a^2 + b^2) - 2*a*b*d) + (b*(n + 1)*(a*b*c^2 +
c*d*(a^2 + b^2) - 3*a*b*d^2) - a*(n + 2)*(b*c - a*d)^2)*Sin[e + f*x] + b*(b^2*(c^2 - d^2) - m*(b*c - a*d)^2 +
d*n*(2*a*b*c - d*(a^2 + b^2)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]
 && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 2] && LtQ[n, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n])

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 3081

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3134

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + D
ist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*
(b*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(
b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x]
/; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&
LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n]
&&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3138

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {a^2 \sqrt {a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d}+\frac {1}{2} \int \frac {\left (\frac {9 a^2 b}{2}+a \left (a^2+6 b^2\right ) \cos (c+d x)+\frac {1}{2} b \left (a^2+4 b^2\right ) \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx \\ & = \frac {9 a b \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{4 d}+\frac {a^2 \sqrt {a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d}+\frac {\int \frac {\left (\frac {1}{4} a^2 \left (4 a^2+15 b^2\right )+\frac {1}{2} a b \left (a^2+4 b^2\right ) \cos (c+d x)-\frac {9}{4} a^2 b^2 \cos ^2(c+d x)\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{2 a} \\ & = \frac {9 a b \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{4 d}+\frac {a^2 \sqrt {a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d}-\frac {\int \frac {\left (-\frac {1}{4} a^2 b \left (4 a^2+15 b^2\right )-\frac {1}{4} a b^2 \left (11 a^2+8 b^2\right ) \cos (c+d x)\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{2 a b}-\frac {1}{8} (9 a b) \int \sqrt {a+b \cos (c+d x)} \, dx \\ & = \frac {9 a b \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{4 d}+\frac {a^2 \sqrt {a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d}+\frac {1}{8} \left (b \left (11 a^2+8 b^2\right )\right ) \int \frac {1}{\sqrt {a+b \cos (c+d x)}} \, dx+\frac {1}{8} \left (a \left (4 a^2+15 b^2\right )\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx-\frac {\left (9 a b \sqrt {a+b \cos (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}} \, dx}{8 \sqrt {\frac {a+b \cos (c+d x)}{a+b}}} \\ & = -\frac {9 a b \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{4 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {9 a b \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{4 d}+\frac {a^2 \sqrt {a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d}+\frac {\left (b \left (11 a^2+8 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{8 \sqrt {a+b \cos (c+d x)}}+\frac {\left (a \left (4 a^2+15 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {\sec (c+d x)}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{8 \sqrt {a+b \cos (c+d x)}} \\ & = -\frac {9 a b \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{4 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {b \left (11 a^2+8 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{4 d \sqrt {a+b \cos (c+d x)}}+\frac {a \left (4 a^2+15 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{4 d \sqrt {a+b \cos (c+d x)}}+\frac {9 a b \sqrt {a+b \cos (c+d x)} \tan (c+d x)}{4 d}+\frac {a^2 \sqrt {a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 1.84 (sec) , antiderivative size = 395, normalized size of antiderivative = 1.46 \[ \int (a+b \cos (c+d x))^{5/2} \sec ^3(c+d x) \, dx=\frac {\frac {4 b \left (a^2+4 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}+\frac {a \left (8 a^2+21 b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}-\frac {9 i \sqrt {-\frac {b (-1+\cos (c+d x))}{a+b}} \sqrt {\frac {b (1+\cos (c+d x))}{-a+b}} \csc (c+d x) \left (-2 a (a-b) E\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right )|\frac {a+b}{a-b}\right )+b \left (-2 a \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right ),\frac {a+b}{a-b}\right )+b \operatorname {EllipticPi}\left (\frac {a+b}{a},i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right ),\frac {a+b}{a-b}\right )\right )\right )}{\sqrt {-\frac {1}{a+b}}}+2 a \sqrt {a+b \cos (c+d x)} (2 a+9 b \cos (c+d x)) \sec (c+d x) \tan (c+d x)}{8 d} \]

[In]

Integrate[(a + b*Cos[c + d*x])^(5/2)*Sec[c + d*x]^3,x]

[Out]

((4*b*(a^2 + 4*b^2)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/Sqrt[a + b*Cos[c
 + d*x]] + (a*(8*a^2 + 21*b^2)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/S
qrt[a + b*Cos[c + d*x]] - ((9*I)*Sqrt[-((b*(-1 + Cos[c + d*x]))/(a + b))]*Sqrt[(b*(1 + Cos[c + d*x]))/(-a + b)
]*Csc[c + d*x]*(-2*a*(a - b)*EllipticE[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b
)] + b*(-2*a*EllipticF[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)] + b*EllipticP
i[(a + b)/a, I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)])))/Sqrt[-(a + b)^(-1)]
+ 2*a*Sqrt[a + b*Cos[c + d*x]]*(2*a + 9*b*Cos[c + d*x])*Sec[c + d*x]*Tan[c + d*x])/(8*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1133\) vs. \(2(331)=662\).

Time = 33.46 (sec) , antiderivative size = 1134, normalized size of antiderivative = 4.20

method result size
default \(\text {Expression too large to display}\) \(1134\)

[In]

int((a+cos(d*x+c)*b)^(5/2)*sec(d*x+c)^3,x,method=_RETURNVERBOSE)

[Out]

-1/4*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-72*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6*
a*b^2+(44*a^2*b+72*a*b^2)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-4*a^3-22*a^2*b-18*a*b^2)*sin(1/2*d*x+1/2*c
)^2*cos(1/2*d*x+1/2*c)+4*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(11*
EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2*b+8*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b^3-
9*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2*b+9*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*
b^2-4*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*a^3-15*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^
(1/2))*a*b^2)*sin(1/2*d*x+1/2*c)^4-4*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*(sin(1/2*d*x+1/2*c)^2
)^(1/2)*(11*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2*b+8*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))
^(1/2))*b^3-9*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2*b+9*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b
))^(1/2))*a*b^2-4*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*a^3-15*EllipticPi(cos(1/2*d*x+1/2*c),2,(
-2*b/(a-b))^(1/2))*a*b^2)*sin(1/2*d*x+1/2*c)^2+11*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^
2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2*b+8*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)
*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-9*(sin(1
/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/
(a-b))^(1/2))*a^2*b+9*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*Ellipti
cE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b^2-4*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^
2+(a+b)/(a-b))^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*a^3-15*a*b^2*(sin(1/2*d*x+1/2*c)^2)^(
1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2)))/
(2*cos(1/2*d*x+1/2*c)^2-1)^2/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(
-2*b*sin(1/2*d*x+1/2*c)^2+a+b)^(1/2)/d

Fricas [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^{5/2} \sec ^3(c+d x) \, dx=\text {Timed out} \]

[In]

integrate((a+b*cos(d*x+c))^(5/2)*sec(d*x+c)^3,x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^{5/2} \sec ^3(c+d x) \, dx=\text {Timed out} \]

[In]

integrate((a+b*cos(d*x+c))**(5/2)*sec(d*x+c)**3,x)

[Out]

Timed out

Maxima [F]

\[ \int (a+b \cos (c+d x))^{5/2} \sec ^3(c+d x) \, dx=\int { {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sec \left (d x + c\right )^{3} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^(5/2)*sec(d*x+c)^3,x, algorithm="maxima")

[Out]

integrate((b*cos(d*x + c) + a)^(5/2)*sec(d*x + c)^3, x)

Giac [F]

\[ \int (a+b \cos (c+d x))^{5/2} \sec ^3(c+d x) \, dx=\int { {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sec \left (d x + c\right )^{3} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^(5/2)*sec(d*x+c)^3,x, algorithm="giac")

[Out]

integrate((b*cos(d*x + c) + a)^(5/2)*sec(d*x + c)^3, x)

Mupad [F(-1)]

Timed out. \[ \int (a+b \cos (c+d x))^{5/2} \sec ^3(c+d x) \, dx=\int \frac {{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{5/2}}{{\cos \left (c+d\,x\right )}^3} \,d x \]

[In]

int((a + b*cos(c + d*x))^(5/2)/cos(c + d*x)^3,x)

[Out]

int((a + b*cos(c + d*x))^(5/2)/cos(c + d*x)^3, x)